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A method to compute the bound state eigenvalues and eigenfunctions of a
Schiodinger equation or a spinless Salpeter equation with central interaction is
presented. This method is the generalization to the three-dimensional case of the
Fourier grid Hamiltonian method for a one-dimensional 8dimger equation. It
requires only the evaluation of the potential at equally spaced grid points and yields
the radial part of the eigenfunctions at the same grid points. It can be easily ex-
tended to the case of coupled channel equations and to the case of nonlocal inter-
actions. (© 1998 Academic Press

I. INTRODUCTION

Numerous techniques have been developed to find the eigenvalues and eigenvectol
the Schodinger and the spinless Salpeter equations. In particular, developments of t
Hamiltonian in a convenient bases have been widely used (see, for instance, Refs. [1,
The accuracy of the solutions depends on two parameters: The size of the basis ar
characteristic length which determines the range of the basis states. Upper bounds of
true eigenvalues are computed by diagonalizing the corresponding Hamiltonian matrix. T
quality of the bounds increases with the size of the basis and for a given number of basis st:
there exist a characteristic length which minimizes the value of a particular upper bounc

In the case of a Schdinger equation, other methods requiring only the evaluation of the
potential at equally spaced grid points yield directly the amplitude of the eigenfunctions
the same grid points [3, 4]. In particular, the Fourier grid Hamiltonian method [4, 5] appea
very accurate and simple to handle. This method is variational [6] and relies on the fe
that the kinetic energy operator is best represented in momentum space, while the poter
energy is generally given in coordinate space.

In this paper, we show that this last method can be generalized to treat the semirelativi:
kinetic energy operator, simply by developing the Fourier grid Hamiltonian method i
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three-dimensional space. Consequently, we propose to call our approach, the three-dime
onal Fourier grid Hamiltonian method. We focus our attention on the case of purely cent
local potential, but the method can also be applied if the potential is nonlocal, or if couplir
exists between different channels. As explained below, the accuracy of the method depe
on the number of grid points and on the maximal radial distance considered to integrate
eigenvalue equation. This last parameter is not easy to calculate without knewiayi
the wave function, so we propose amsatzto determine it.

Our method is outlined in Section Il, while Section Ill presents a convenient way t
compute the domain on which the wave functions are calculated. Test applications of 1
method are described in Section 1V, and a brief summary is given in Section V.

IIl. METHOD

A. Theory

We assume that the Hamiltonian can be written as the sum of the kinetic éhergya
potential energy operatdf. The eigenvalue equation for a stationary state is given by

[T+ V]I¥) = E|V), @)

whereT depends only on the square of the relative momergdatween the particlesA/,
is a local interaction which depends on the relative distance Eaisdthe eigenenergy of
the stationary state. This equation is a nonrelativistic &tinger equation if
N p?

T=mg+my+ —, (2)

21
wherem; andm, are the masses of the particles ant the reduced mass of the system
(we use the natural units= ¢ = 1 throughout the text). Equation (1) is a spinless Salpetel
equation if

fz\/p2+m§+\/p2+m§. 3
In configuration space, Eq. (1) is written
/[<r|f|r’> + (VI |W) dr’ = E(r|). @)
In the following, we only consider the case of a local central potential
(rVIr'y =V@E)s —r’y withr =|r|. (5)
It is then useful to decompose the wave function into its central and orbital parts
(riw) =R@)Yim(F) withf =r/r. (6)

To compute the nonlocal representation of the kinetic energy operator, we introduce f
basis stateg|kiv)}, which are eigenstates of the operapdr They are characterized by
good orbital quantum numbe¢s, v), obey the relation

T(p?) [kav) = T(K?) [kav), @)
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and satisfy the orthogonality relation
KAV k) = 8K — K858, (8)
The representation of these states in the configuration space is given by

(r [ ka) = v/ (2k?/7) . (kD) Y (), )

where functiongj; (kr) are spherical Bessel functions. Using the completeness relation «
basis stategkav)} and Eq. (8), we find

. o2 S _ R
Ty = /O AT D > 1 k) s kr) Y ()Y, (). (10)

A=0 v=—»2

Introducing the regularized functian(r) = rR (r), Eq. (4) is written

gr/OOolr’r'u.(r/)/oodk T (k2 jikr) ji (kr') + V.(Our(r) = Eu(r). (11)
0 0

T

This equation is the basis of the three-dimensional Fourier grid Hamiltonian method.

B. Discretization

We now replace the continuous variablby a grid of discrete values defined by
ri=iA withi=0,1,...,N, (12)

whereA is the uniform spacing between the grid points. Regularity at the origin impose
U, (ro = 0) = 0. For bound states, we have |im,, u; (r) = 0. Consequently, we choose to
setu; (ry = NA) = 0. Actually, this last condition is not necessary but it does not spoil the
accuracy of solutions. The normalization condition for the radial wave function is

/oodr[u|(r)]2= 1. (13)
0

The discretization of this integral on the grid gives

N-1

A Tu)* =1. (14)

i=1

This corresponds to an integration by trapezoidal rule thanks to the choice of a vanishi
radial wave function at = rg andr =ry.

The grid spacingA in the configuration space determines the grid spadikgn the
momentum space. The maximum value ebnsidered beingy = N A, the wave function
lives in a sphere of diameter R in the configuration space. This length determines the
longest wavelengthmax and, therefore, the smallest frequengl which appears in the
k-space is

Ak = - (15)
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We have now a grid in configuration space and a corresponding grid in momentum spac
s
ks=sAk=—— withs=0,1,..., N. 16
s NA (16)

If we noteV; = V(rj), the discretization procedure replaces the continuous Eq. (11) by &
eigenvalue matrix problem

Z
,_.

H.,¢l e fori=1,...,N—1, 17)

K
1N

where

2 2
Hij = 2{33 i Zﬁ((ﬁ) >j| (%si) i (%sj) TRV (18)

The (N — 1) eigenvaluess, of Eq. (17) correspond approximately to the fifdt — 1)
eigenvalues of Eq. (11). In the case of a potential which possesses a continuum spec
only eigenvalues below the dissociation energy are relevant. Other eigenvalues, which fc
a discrete spectrum of positive energies, are spurious and correspond to standing w
solutions satisfying(r) = Oatr = 0and = NA. The eigenvectap” gives approximately
the values of the radial part of ti¢h solution of Eq. (11) at the grid points. The eigenvectors
¢ must be normalized according to Eq. (14) in order gfat> u}'(r;).

This method can also be used in the case of a nonlocal potential. If the interaction depe
only on the radial variable, then the discretization of the action of the potential on the wa
function gives

N—1
/er(rr)u(r)—>AZW(r|,r)u(r) fori=1,...,N—1 (19)

j=1

This corresponds also to an integration by trapezoidal rule thanks to the choice of a vanish
radial wave function at =rg andr =ry.
Coupled channels calculations can also be performed with this method. For instance,
us consider the coupled equations
qo

Alo) + Wo®) = Elo)

, (20)
Wlg) +A%9) = Ep).
The corresponding discretized equations are
N-1
Z (1>¢}1) +V\/.,¢(2)] _ E¢I<1>
j=1
| (21)

=

Wiof? + M) = £
=1
H12
j

whereH;;"” andW; are the three-dimensional Fourier grid representation of the interactio
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operatord] 2 andW, respectivelyp™? are approximately the values of the radial part
of the eigenstatelg™?) at grid points; =iAfori =1,..., N — 1.

C. Relevance of Discretization

As shown in Section IIA, the three-dimensional Fourier grid Hamiltonian method relie
on the relation

éxx/ /oo j1(kx) ji (kxHk? dk = 8(x — X'). (22)
0

The equivalent discrete orthogonality relation on our grid of points is
27'[2 .. N 2. T\ . T, (N,
NEL ;s ji (NSI> i <NSJ> = A, (23)

One can thus expect thaq-(jN") = §;; for all values ofN andl. Actually, the situation is

less favorable. As shown in the Appendix foe 0 we have

Ai(jN,l:O) =& VN. (24)
Forl = 1, A('=" + 5, but we have verified numerically that

lim_ A=Y = 5. (25)

For values of larger than 1, formula (25) is only approximately correct for small values
of i andj. Consequently, the accuracy of this method becomes poorer hihereases;
nevertheless for a large enough number of grid points, very good results can be obtaine

IIl. DOMAIN OF INTEGRATION

The accuracy of the eigenvalues and eigenfunctions depends on two parameters:
value of N and the value of y. Obviously, for a given value afy the accuracy increases
with N. A proper choice for the domain of integration is not evident.\lfis too small,
incorrect solutions will be found. If this parameter is too large, a great number of gri
points will be necessary to obtain stable eigenvalues. In this section, we propaissadn
to compute a suitable value of;. The idea is to find the radial distancefor which the
radial partR(r) of the eigenfunction considered is such that

reR(re)

maxrR(r)] — € (26)

wheree is a number small enough to neglect the contributioR@f) for values ofr greater
thanr,.. The eigenfunction considered beiagriori unknown, we propose to use a trial
wave function matching at best the true eigenfunction, at least for therldogjeavior. The
value ofr satisfying the condition (26) for the trial wave function will be the valyaused
for the numerical computation.
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The first step is to find a potenti&l,, (r) which matches at best the potentiédr) for
r — oo. In the following, we will consider three different types:

Voo (r) = k1P with « > 0; p > 0, (27a)
Vao(r) = —r"—p withx > 0;0< p <1, (27b)
Voo(r) = =Vg0(@a—r) withVy > 0;a > 0. (27¢)

The second step is to choose a trial stajevhich depends on one parametetaken here

as the inverse of a distance. This trial state and the eigenstate considered are characte
by similar behaviors for — 0 andr — oco. The best matching between this state and the
trial state is obtained by means of the variational principle. The average value,

(MHl2) = (AT + Voo (MI2), (28)
is then computed and the valuejofs determined by the usual condition,

AAH 1)

=0, (29)

In the case of the spinless Salpeter equation, the variational solution is computed using
fundamental inequality

(VP2 +m2) < \/(p2) + m2. (30)

The radial parR(r) of the trial state is then analyzed to find the value @fhich satisfies
the condition (26).

We have remarked that with=10"* it is possible to reach a relative accuracy better
than 10°° on eigenvalues, provided is large enougliN = 50— 100). A relative accuracy
on eigenvalues better thancan be achieved because the mean value of an observable
computed using the square of the functid(r).

A. Ground States

We first consider the case of ground states, that is to say states without vibratiol
excitation. In the case of a potential with a larg&ehavior given by Eq. (27a), we use
harmonic oscillator wave functions as trial states. The radial part is given by

R(r) = \/(2A2'+3/F <I + g))r' exp(—A1%r2/2). (31)

Using procedures (28), (29) and Eq. (30) for the spinless Salpeter equation with poten
(27a), we find
Y2

= [ pe L0 P32 1 . 1 @)

42 \Jo+drzem (J0+3)r2+ms
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The corresponding relation for the case of nonrelativistic kinematics is obtained with
vanishing value for the parametein the right-hand side of the above formula. The reduced
mass of the system appears naturally and the equation is no longer a transcendental eque

If the potential, at great distances, is similar to the potentials given by Eqgs. (27b)—(27
the trial states used are the bound state Coulomb wave functions. The radial part is writ

R(r) = 1/((20)2+3/T(2 + 3))r' exp(—ar). (33)

The variational calculation for the spinless Salpeter equation with potential (27b) gives

_17Y@-p

r@ +3-p 1 1
A= 2P + . 34
b r@ +3) <\//\2 +m2 A2+ mg) (34)

With the potential (27¢), we obtain

r@ +3) 1 1
2+ 1)In(2ra) — | . (35
avomen o G2 (g ) )| e

Again, the corresponding relations for the case of nonrelativistic kinematics is obtaine
with a vanishing value for the paramefeunder the square roots in the right-hand side of
the above formulas. The reduced mass of the system appears naturally, but Eq. (35) rem
a transcendental equation.

Oncex is found, itis easy to findy. Let us introduce a dimensionless variakile= Ary.
Using condition (26) with Egs. (31) and (33)y is given by the transcendental equation

A= —
2a

XW 1/m
=0+ 1) —Inem 36
XN {(+)<n|+1+) ne} , (36)
with m = 2 in the case of Eq. (31) amd = 1 in the case of Eq. (33).

B. Vibrational Excited States

When the eigenstate considered is characterized by a vibrational excitedifferent
from 0, we can use, in principle, ttie + 1)th harmonic oscillator or Coulomb wave function
as a trial wave function. But such a procedure makes analytical calculation of the aptima
much more complicated. One knows that the polynomial multiplying the exponential ter
in the (v + 1)th wave function has degree + |) in the Coulomb case an@v + 1) in
the harmonic oscillator case. So we can use a trial state with the valueepfaced by
an effective orbital angular momentugg which take into account the highest degree of
the polynomial part of the radial trial state. We have verified that for potentials with larg
distance behavior of type (27a), it is a good approximation to kgke= 2v + |. In the
case of potentials with large distance behavior of types (27b) or (27c), it is better to u
lef = v + 1.

IV. NUMERICAL IMPLEMENTATION

We have tested the accuracy of our method with different models found in the literatu
[1, 2, 7]. In particular, we have find the same results as those of Ref. [1], in which
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Schidinger equation and a spinless Salpeter equation are used with a potential containir
Coulomb part and a linear part. In this section, we only present the results fora8aer
equation with a linear potential and for a spinless Salpeter equation with the Coulon
potential.

In the model of Ref. [7], the masses of some meson states are simply given by a noni
ativistic Hamiltonian with a confinement linear potential

2
H=m1+m2+§—+ar+c. (37)
"

The regularized radial pau (r) of thenth zero orbital angular momentum eigenfunction
of this Hamiltonian can be written in terms of the Airy function [8]

i((Qua)Y3r + x,)

v e AiZ(x) dx ’

wherex, is thenth zero of the airy function. In Fig. 1, we show the eighth S-wave eigenfunc
tion of Hamiltonian (37) for parameters values; = m, = 0.300 GeV a = 0.1677 GeV/,
andC = —0.892 GeV, found in Ref. [7] (this corresponds to the seventh excitation of the
p-meson). On this figure, the exact function is obtained with formula (38) and the nume
ical one has been computed with a valuer gfcalculated with the procedure described
in Section Il fore =10~* and with a number of grid pointsl = 30. In these conditions,
the eighth eigenvalue is found with a relative accuracy better thah This error can be
reduced by a factor 10 or more by increashhgThe numerical solution is indistinguishable
from the analytical solution to the resolution of the figure. If the wave function must be use
to compute mean values of observables, a greater number of points is obviously necess
None analytical solution of the spinless Salpeter equation with Coulomb potential
known. But this equation has been extensively studied and it is possible to compare

u(r) = (2ua)1/6A (38)
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FIG. 1. Comparison of exact (solid curve) and numerically computed (crosses surrounded by circles) eige
functions for the seventh excitation of themeson for the quark—antiquark Hamiltonian of Ref. [7]. Our compu-
tation is carried out wittN = 30 and an integration domain determined by the procedure given in Section Il for
e = 1074, See the text for further details.
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TABLE 1
Energy Eigenvalues of the Spinless Salpeter Equation with Coulomb Potenti®(r) = —«/r
for the Parameter valuesm; = m, = 1 GeV andx = 0.456

State N = 100 N = 200 N = 300 Ref. [1] Ref. [2]
1S 19460 19453 19451 19450 19450
2S 19870 19867 19866 19865 19868
3s 19944 19942 19941 19941 20015
4s 19969 19968 19967 19967 20238
1P 19869 19869 19869 19869 19875

Note Our results, for three values bf with a value ofry calculated with the procedure described in Section 111
for e = 1074, are given with the upper bounds obtained by the variational methods described in Refs. [1, 2].

results of our method with results from other works. In Table 1, we show some eigenvalu
of the semirelativistic Hamiltonian

Hz\/p2+m§+\/p2+m§—rf, (39)

with the parameter valuesy =m, =1 GeV andc = 0.456. The accuracy of our results are
similar of those of Refs. [1, 2], even better for excited states found in Ref. [2] (the purpos
of the work in Ref. [2] was not to reach the greatest possible accuracy, but to demonstr
the feasibility of a method). We have remarked that a greater number of grid points
necessary for the spinless Salpeter equation than for the@ober equation to reach a
similar accuracy.

V. SUMMARY

The three-dimensional Fourier grid Hamiltonian method, formulated and tested in th
paper, appears as a convenient method to find the eigenvalues and the eigenvectors
Schidinger or a spinless Salpeter equation. It has the advantage of simplicity over all t
other techniques. In particular, it requires only the evaluation of the potential at some g
points and not the calculation of matrix elements in a given basis. The method genera
directly the values of the radial part of the wave function at grid points; they are not give
as a linear combination of basis functions. Moreover, the extension of the method to t
cases of nonlocal interaction or coupled channel equations is trivial.

It is worth noting that the method, based on the expansion of the wave function in ba:
functions, can present some interesting features. In some cases, all the matrix elements
be generated from analytic expressions. Further, the size of the matrices required car
considerably smaller (about 2020 or 40x 40) [1].

The accuracy of the solutions of the three-dimensional Fourier grid Hamiltonian methc
can easily be controlled since it depends only on two parameters: The number of grid poi
andthe largest value of the radial distance considered to perform the calculation. A very gc
estimation of this last parameter can be easily determined by using the procedure descri
above, and the number of grid points can be automatically increased until a convergenc
reached for the eigenvalues. The reliability of the method is also ensured by its variatior
character.
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The method involves the use of matrices of ordéd — 1) x (N — 1)), whereN is
the number of grid points. Generally, the most time-consuming part of the method is tl
diagonalization of the Hamiltonian matrices. This is not a problem for modern computer
even for PC stations. Moreover, several powerful techniques for finding eigenvalues and
eigenvectors exist and can be used at the best convenience. A demonstration progra
available via anonymous FTP aahsp02.umh.ac.be/pub/ftp_pnt/.

APPENDIX: ORTHOGONALITY CONDITION FOR S-WAVE STATE

Using the development of spherical Bessel functions in terms of sine and cosine functio
we have

A= _ Zs|n< )sin(%sj). (A1)

Replacing the sine function in terms of exponential functions and usig@sinsin(z) =0
the formula above becomes

N—

_ 1 ) . o ) . .

(N,I=0) __ (r/N) —i(/N) 7/N) —i(r/N)

Al ——*NZ (/NI _ gri (/NS (g r/Ns] _ @i (r/NDsT) (A2)
s=0

Distributing and using the well-known relation

el
I(JI/N)SJ
Z € g(ﬂ/N)l (A3)

one can obtain Eq. (24).
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